Northwest China is covered in ‘yellow snow,’ but don’t blame the dogs ~ The Washington Post

The desert dust storm phenomenon is also is a problem in the San Juan mountains of southwest Colorado when the dry and becoming dryer deserts of SE Utah and N. Arizona blow into our region.  The dust particles become the condensation/freezing nuclei which become snow crystals and fall as orange or red colored snow.  Check it out…
‘Yellow snow’ blankets northwest China

Screen Shot 2018-12-06 at 11.49.38 AM.png


December 4

“Don’t eat the yellow snow” is advice to live by — and that definitely goes for what fell in China this weekend, too.

Northwest China is covered in a thick coating of yellowish, brownish snow. More than 4 inches of it fell across Urumqi and surrounding cities on Saturday, according to the South China Morning Post.

Strong winds kicked up a dust storm which combined with a winter storm to create a layered effect in the fallen snow. The snow started out clean and white before the dust moved in. Everything looks like it’s covered in yellow, but videos show if you brush away the top layer, pure white snow is underneath. Locals are comparing the effect to tiramisu.

The yellow-brown concoction can be shoveled and pushed off roads just like any other snow, but the dust is going to linger even after it melts. It will take a good, hard rain to clean that up.


This a fine tale by friend Deb Kees spinning the story of very old friends/powder junkies/eternal optimists who believed in themselves, worked hard and started a heli-ski business in a part of the world (San Juan Mountains) against all odds. Like all great Westerns & Latin American novels, there’s just enough truth, some legend and a little myth all mixed together. rŌbert


Screen Shot 2018-11-30 at 6.51.04 PM.pngScreen Shot 2018-11-30 at 6.52.11 PM       ~~~  READ the STORY ~~~

Screen Shot 2018-11-30 at 6.51.41 PM.png









The Ascending Spiral ~~ By Ed LaChapelle ~ some things to think about with a new ski season … rōbert

an email from Don Bachman today

Hi Jerry,

Thanks for republishing Ed’s Ascending Spiral piece.  I forwarded it the other day to Doug Cabot, instructor at the NAS in Breckinridge who replied he’s assigned it as required reading.

Wisdom from early mentors.



Ed LaChapelle in 2006

The theme and the wisdom that Whymper (1871) handed to us many years ago.  He spoke of mountaineering in general, but his words are just as cogent today in this “decision” context: “Climb if you will but remember that courage and strength are naught without prudence, and  that a momentary negligence may destroy the happiness of a lifetime.  Do nothing in haste, look well to each step; and from the beginning think what might be the end.”

“Look well to each step” covers many individual actions or observations on the way to acquiring bases for decisions.  Here I will look at a couple in detail.   First, there is the eternal business of digging snow pits…how many, how  often, where and in what detail (the ascending spiral is spinning fast here). McCammon and Sharaf (2005) cite Peter Schaerer’s sensible admonition to be quick, an approach to snow pits I can readily endorse.  Let’s look closer at this whole pit digging business, one that sometimes can become the tail that wags the very large dog of avalanche data collection.  Snow pit digging is a necessary but far from sufficient action to understand snow stability.  If it is only part of the picture why does it so often come so much to the fore?  I suggest that this is because we can observe and record a select body of detail like crystal type and size, hardness, density, layer thickness, etc. And why do we record these particular features?  Because they are readily rendered into numerical values and logged in notebooks, an act that may convey comfort in having acquired “objective” data but not always be what we need to know.  For example, rate of change of viscosity in a snow layer might be more informative, but this is a tough one in a cold laboratory and impossible in the field.  So, we are often led down the easy primose path of the possible. Let me put forth the heretical notion that we do not need more data from a given snow pit, but less.  The act itself of digging with a shovel is the culmination of the Schaerer Quick Pit concept.  By the time I have finished digging a snow pit, I usually know about 90% of what I am going to find from it about snow stability.  Logging pit details is a good educational tool and expands knowledge about a wide range of snow properties, but should not be confused with the backbone of avalanche forecasting. In the larger picture of snow stability, snow pits provide a quick but static snapshot of conditions at a given time and place.  From the external perspective of a passing observer, snow on a mountainside is just sitting there, apparently dormant.  The snow cover, however, is neither static nor dormant, but a positively seething mass of activity.  Snow is constantly gliding, creeping and settling.  Layer by layer the physical properties are constantly changing as crystals metamorphose.  Waves of changing temperature sweep through the snow cover while radiation works at the surface.  Snowfall and wind drifting change the amount and distribution of loading with each passing storm.  Understanding the complex behavior of snow is a problem in rheology, the science of deformation and flow of matter.  In this case the problem is further compounded by the matter in question being a granular visco-elastic solid close to its melting point.  You can’t make it much more complicated than that.

The observational role of the snow pit in all this compared with a broader and more lengthy data collection is clarified by a concept in rheology put forth by Meiner (1964), the Deborah Number.  Meiner pointed out the significance of the Prophetess Deborah singing that “the mountains flowed before the Lord”.  In the limited time frame of human perception, the mountains are static and eternal, but for the Lord, whose time frame is infinite, they flow. Meiner defined the non-dimensional Deborah Number as follows:

D = time of relaxation/time of observation

A high Deborah Number means the subject in question appears to an observer to be a static and unchanging solid.  The brief observation from a snow pit implies a high D snow cover and hence a static view of what actually is an active (“flowing”) snow cover.  To gain insights into the dynamic character of the latter, observations extended in time are needed to lower the value of D. In other words, stability evaluation has to be an on-going process, the longer the better. Ideally, the estimate of snow stability evaluation on a given avalanche path begins with the first snowfall of winter.  More about this in a moment.

A second relevant action, consulting some sort of checklist, appears when George (2005) describes the NivoTest.  This is where the ascending spiral really starts to spin.  Check list have been around for a long time and in various formats and the NivoTest stands out as possibly the most sophisticated one to date.  Looking into history, the earliest check list I can find is G. Bilgeri’s Six Points (three for terrain, three for snow conditions) already in use by the 1930’s, described by Seligman (1936).  Later, as one example, we have Atwater’s (1952) Ten Contributory Factors, initially with equal weight but later informally modified by various weighting schemes. I like the NivoTest because it nicely condenses terrain, snow features, current avalanche activity and human factors.  However, it is disquieting to see it illustrated in TAR by a photo of a guide consulting it in the field in the middle of what appears to be avalanche terrain.  This brings the checklist concept into play far, far, too late.  If you wait until standing on the edge of an avalanche path before considering snow stability and risks, very poor decisions can ensue. Again, evaluating snow conditions is an ongoing process, not a single event (reduce the Deborah Number!). The NivoTest, or any similar scheme, needs to be constantly in play days prior to any avalanche exposure, when evolving weather conditions contribute to the checks. Early entries to the NivoTest may be hazy as to detail, but even then a picture will start to evolve than can be constantly updated until the final moment of  decision in avalanche terrain.

Seligman (op. cit.) nearly seventy years ago placed strong emphasis on anticipating snow conditions from weather patterns long before going into the field.  More recently I have made the same point (LaChapelle, 1980). Of course, the weakness of any checklist system is the risk of rigidity and thus locking out unusual thinking demanded by unusual conditions.  Whether a  NivoTest or any other scheme, check lists have to be reminders and not  substitutes for constantly paying attention to a wide spectrum of clues  about snow behavior.  I view George’s mention of mandated us to use checklists like the NivoTest with much alarm.  Plantiff’s lawyers can have a field day with mandates.

Among the various TAR articles about decisions, only Stewart-Patterson mentioned luck, where he named it one of the three main factors in decision-making, though only in passing.  This topic needs wider recognition.  Let’s face it, most of us in the avalanche game have been saved many times over by luck.  George (op. cit.) mentions that even experts say they are right only 50% of the time.  Now we know that experts don’t get caught in avalanches 50% of the time, so the obvious conclusion must be that luck along with undocumented skills is right in there as a major player.  This is not surprising when we consider that most places and most times the alpine snow cover is stable in the face of normal triggering forces.  The whole business of evaluating snow stability and making decisions hinges on recognizing those fewer times when it is not.  Thus the odds more often favor a mistake on the safe side than one that raises risk.  Of course, by random chance, bad luck as well as good can follow even the most skilled and careful decisions. “… from the beginning, think what might be the end.”  This really gets to the heart of the matter, emphasizing the idea of stability evaluation as an ongoing and continuous process mentioned above.  Whymper spoke to anticipating risks in mountaineering: his words speak with equal force to anticipating risks in avalanche terrain.  Here is where the experts get sorted out from the beginners.  My idea of an expert is a person who constantly follows evolution of the snow cover and repeatedly thinks ahead to “what might be the end” for one risk situation after another.  The end might be an avalanche fall, and even more important might be consequence of an avalanche fall.  I learned this many years ago from Andre Roch (personal communication) who pointed out that two questions are involved.  First, will an avalanche occur, and, second it if does occur what will be the resulting risk?  For example, a small avalanche poses much less risk to a skier if it has a gentle outrun onto safe ground than it does if it carries a victim over a cliff or into a crevasse.

The whole business of expertise is examined by Conger (2005), who allots analytical skills in decision-making to persons ranging from novice to proficient, but reserves the role of intuition for experts.  He is onto something here, raising the whole question of just what constitutes intuition.   Perhaps this is a case of of not being able to define intuition but being able to recognize it when we see or exercise it.  Certainly we can all recognize the  “seat-of-the-pants” factor in evaluating snow stability, but just what do we mean?  Here I will make a try at answering this question and defining intuition in this context. To begin, consider what intuition is not.  It is not some magical quality bestowed on mature people of wide experience along with gray hair and slowing reflexes.  It is not some sort of extra-sensory perception; quite the contrary.  Intuition is the lifetime accumulation of precisely those sensory perceptions of snow, weather and avalanche behavior that have accumulated, often in the sub-conscious, that cannot readily be quantified, logged in a  notebook or clearly explained.  Such perceptions, nevertheless, are based on the physical behavior of the real world, not on vague mental constructs.  An example is the meteorological perception of a mountain snowstorm evolution based on subtle changes in the spectral distribution of light filtering through clouds as the sun descends in the sky and cloud layers come and go in shifting fashion.  No doubt a wide-spectrum recording light sensor could construct graphic records of these changes and eventually build a quantitative document.  But the expert integrates all this under the guise of intuition and recognizes the likely next storm trend. Here is another example from my own experience.  I once was involved in a field training program for heli-ski guides.  The exercise was preceded by a very light fall of fluffy snow, followed by a substantial fall of mixed snow types and mid-range densities.  This combination produced widespread instability with the fluff acting as lubricating layer.  Two days of field training produced ski releases everywhere, excellent for demonstrating how, and how not, to test ski an avalanche path.  On the third day the first helicopter flight took several of us to a ridge top.  One of the experienced guides skied 100 yards down the ridge and stopped.  I followed close behind and joined him.  He turned and said, “There is no tension in the snow today”.   I replied, “I agree”.  That day-long exercise never started another ski release no matter how hard we tried.  So here were a couple of presumed “experts” putting their intuition accurately to work.  What did we actually sense about the snow?  We can throw around words like kinesthetic perception and psycho-rheology, but what we actually had was many years of experience with the way our skis and legs reacted to snow structure, accumulating this experience somewhere in our heads.  Did we actually experience “tension” as physics would define it?  Probably not, this is another convenient word to toss around, but we both knew what we meant.  How many readers of TAR know what we meant? As the spiral ascends and scientific and technical knowledge about snow continues to grow, are we coming closer to improved training and safety practices for avalanche risk management?  Or are we locked into Wilde’s  (1994) risk homeostasis trap?  The dialog needs to continue.

Ed LaChapelle was born in 1926 in Tacoma, Washington. He spent two years in the U.S. Navy 1944-46 as an electronic technician, then graduated in math and physics from the University of Puget Sound in 1949. Professionally he has been a guest worker at the Swiss Avalanche Institute 1950-51, a snow ranger with USFS at Alta, 1952-72, done glacier research in Greenland and Alaska 1952-1956,and on the Blue Glacier on Mt. Olympus 1957-1970. He was appointed to the faculty of the University of Washington in 1967, retired as Professor Emeritus of Geophysics and Atmospheric Sciences in 1982. He has been active in snow and avalanche affairs for all of his professional life, including retirement.   

Ed died February 1, 2007 enjoying some new powder at Monarch Pass after attending his ex-wife (Dolores LaChapelle’s) memorial in Silverton a week earlier… We got to share my last bottle of fine Pisco that evening in Silverton.  JR

San Juan Hut System makes the NYT …

Screen Shot 2018-10-15 at 4.08.58 PM.png

This sparse, unaltered landscape has long been a source of fascination for geologists, mainly because of its shape. Rather than charting a one-way course (as with most canyons), Unaweep, which bisects a portion of the sprawling Uncompahgre Plateau, instead flows out in two directions, with an elevated hump in the middle, like a hose with two openings.

Screen Shot 2018-10-15 at 4.10.53 PM.png

This makes it ideal for road bikers, who see the bare, winding roads of Unaweep, and nearby Grand Junction, as an irresistible challenge. Since the 1970s, bike enthusiasts have latched onto Mesa County for its rich supply of trails. Just outside town, the Colorado National Monument makes for one of the most spectacular, high-altitude rides in America. (The 1985 Kevin Costner film, “American Flyers,” was filmed here.)


It is the latest project by the founders of the San Juan Hut System, which launched in 1987 with a set of five huts on the north face of the Sneffels Range in Colorado. Originally meant as an easy-to-navigate route for intrepid skiers, the DIY appeal of the huts soon expanded to bikers, who take over those same trails in the summer months. Today, the system commands a total of 16 huts, spread over hundreds of square miles inside Uncompahgre National Forest.

One of the few signs of life can be found at the Bedrock General Store, looking like a time capsule out of the 1910’s and which made an appearance in “Thelma and Louise.” Credit Caine Delacy for The New York Times

In May, just after this new trail officially opened, I was one of the first bikers to attempt this challenging route, accompanied by my friend, Joe, who bailed halfway through the first day. (More on that later.)

The remoteness of the trail is a double-edged sword: on the one hand, there are razor-sharp mesas and ghostly valleys, making for unforgettable scenery. But this being rural Colorado, the weather can be unpredictable. Heat makes the trail brutally uncomfortable in summer; the snow and ice make it impassable in winter. As a result, it’s only open for two months a year — May and October.

“These canyons are rough, desolate, harsh,” explained Zebulon Miracle, a geologist who leads dinosaur walks for guests at the Gateway Canyons Resort, an unexpected luxury outpost in the middle of the red rock peaks, 53 miles from Grand Junction.

For bikers, all roads lead to Moab

But if humans have survived in these parts for a couple thousand years, then I should be able to manage for a couple days, right? And it’s not like I’d be camping out in the wilderness. Two huts, installed along the trail roughly 50 miles apart, would provide overnight shelter for the three-day, two-night journey. They are basic cabins, built of plywood, and furnished with bunk beds and a propane tank stove.

Best of all, they are fully stocked with food: bacon, eggs, tortillas, onions, canned food (beans, salsa, tuna fish), cheese, salami sticks, cookies, different kinds of dried fruit, coffee, tea and plenty of water. There’s even a cookbook to show how to make elaborate meals like curry or chicken parm. (We booked our huts three months in advance of our trip, on the San Juan Huts website:

Heading up the first climb of Unaweep Canyon on Highway 141Credit Caine Delacy for The New York Times

The cost for two nights was $199. (The “beer option” costs an additional $30 per person.)

Ahead of this trip, I had spoken with Kelly Ryan, a former ski patrol and the daughter of Joe Ryan, who founded the San Juan Huts Systemin 1987. According to Ms. Ryan, the Grand Junction-Moab route, though challenging, is “beginner friendly.” While this tour involves long days, the terrain itself is nothing a newbie — even someone who’s never been on an overnight cycling trip — can’t handle, she said. Plus, the relative absence of cars on this route makes things more manageable. Typically, busy highways represent a hazard for road biking. “You’re more likely to get hurt mountain biking, but you’re more likely to die road biking,” Ms. Ryan said.

This didn’t exactly inspire confidence, but then again, this wasn’t a road biking trip, per se. The route is split between old paved highways and sections of dirt, and because of that, the route is technically classified as a gravel grinder tour.

Gravel grinding, once popular in the 70s and 80s, is essentially off-road road biking, and it’s enjoying a resurgence lately. Shops like SloHi in Denver Rapha in Boulder are now renting gravel grinders and hosting group rides.

While mountain biking is often seen as too dangerous, and road biking has a reputation for being a little dull, gravel grinders offer a middle way. Their tires are thick, but more pressurized than mountain bikes, and they are more stable in their frames. Ms. Ryan called them the “Swiss Army knife of the bike world” — not as clunky as a mountain bike, but not skittish and thin like road bikes.

Two huts, installed along the trail roughly 50 miles apart, provide overnight shelter for the three-day, two-night journey. They are basic cabins, built of plywood, and furnished with bunk beds and a propane tank stoveCredit Caine Delacy for The New York Times

On a route like this, which involves long distances and rolling landscape on some unpaved roads, a gravel grinder can really shine. I opted to rent a Moots Routt 45 from a nearby Grand Junction vendor.

We were set to go.

~~~  CONTINUE  ~~~